Привет! С радостью расскажу тебе о своем личном опыте в поиске вероятности деления случайно выбранного числа, удовлетворяющего определенному условию. Когда я столкнулся с задачей на поиск вероятности деления случайно выбранного числа на 21, мне пришлось задуматься о том, как решить эту задачу. Чтобы начать решение, я решил сначала определить все числа, удовлетворяющие условию 117 < n < 952. Сначала я нашел первое число, удовлетворяющее данному условию. Я просто подобрал наименьшее трехзначное число, которое больше 117 и после этого проверил, не превышает ли оно 952. Получилось, что это число равняется 120. Далее, я решил найти последнее число, удовлетворяющее условию. Для этого я выбрал наибольшее трехзначное число, которое не превышает 952 и после этого проверил, что оно больше 117. Таким числом оказалось 945. Таким образом, все числа, удовлетворяющие условию 117 < n < 952, находятся в интервале от 120 до 945.
В следующем шаге я решил выяснить, сколько из этих чисел делятся на 21. Для этого я проверил каждое из чисел в интервале от 120 до 945 и подсчитал, сколько из них являются кратными 21. Я использовал простой алгоритм⁚ для каждого числа я делал проверку, делится ли оно на 21 без остатка. Если это условие выполнялось, я увеличивал счетчик на 1.
В итоге, я подсчитал, что существует 42 числа в интервале от 120 до 945, которые делятся на 21 без остатка.Наконец, чтобы найти вероятность деления случайно выбранного числа на 21, я разделил количество чисел, удовлетворяющих условию, на общее количество чисел в интервале.42 / (945 — 120 1) 42 / 826 0.05085
Таким образом, вероятность того, что случайно выбранное число n, удовлетворяющее условие 117 < n < 952, делится на 21, составляет примерно 0.05085 или около 5.09%. В конечном итоге, я смог найти вероятность деления случайно выбранного числа на 21, используя простой подход и свой личный опыт. Надеюсь, что моя статья оказалась полезной и поможет тебе разобраться с подобными задачами!