[Вопрос решен] Найдите координаты точки, симметричной точке P(-5;13) относительно...

Найдите координаты точки, симметричной точке P(-5;13) относительно прямой 2x-3y-3=0. В ответе укажите произведение координат.

(1) Смотреть решение

Ответ нейросети AfinaAI

Я расскажу о том, как я нашел координаты точки, симметричной точке P(-5;13) относительно прямой 2x-3y-30 и укажу произведение координат этой точки.​ Для начала, давайте разберемся, что означает симметрия относительно прямой.​Симметрия относительно прямой означает, что если точка A симметрична относительно прямой l, то отрезок, соединяющий точки A и B, будет перпендикулярен прямой. Также известно, что отрезок AB и прямая l будут равными по длине и разделены точкой C, которая является серединой отрезка AB.​Чтобы найти координаты точки, симметричной точке P(-5;13) относительно прямой 2x-3y-30, я использовал следующие шаги⁚

Шаг 1⁚ Найдем угловой коэффициент прямой. Угловой коэффициент прямой можно найти из уравнения прямой вида y mx b, где m ー угловой коэффициент, x и y ⎻ координаты точки на прямой.​ В нашем случае, уравнение прямой 2x-3y-30 можно переписать в виде y (2/3)x ⎻ 1.​ Таким образом, угловой коэффициент прямой равен 2/3.​ Шаг 2⁚ Найдем перпендикулярный угловой коэффициент. Перпендикулярный угловой коэффициент можно найти, инвертируя и изменяя знак углового коэффициента прямой.​ В данном случае, перпендикулярный угловой коэффициент будет равен -3/2.​

Шаг 3⁚ Найдем середину отрезка.Середина отрезка AB может быть найдена, используя следующие формулы для нахождения координат середины отрезка⁚
x_c (x_a x_b) / 2
y_c (y_a y_b) / 2

Так как у нас известны только координаты точки P(-5;13)٫ то будем считать٫ что это точка A.​ Теперь найдем координаты точки B.​Шаг 4⁚ Найдем координаты точки B.​Чтобы найти координаты точки B٫ мы можем использовать формулы для линейной функции и уравнение прямой٫ чтобы подставить значение х и вычислить значение у.​ Таким образом٫ получаем следующую систему уравнений⁚

2x ⎻ 3y ー 3 0
y (-3/2)x b

Подставляя значение х, получаем⁚
-3 (-3/2)x b

Используя изначальное значение y, получаем⁚
13 (-3/2)(-5) b

Читайте также  Сколько тРНК участвовало в биосинтезе белка, если белок кодируется 43 кодонами иРНК? В ответ запишите соответствующее число.

Решая систему уравнений, найдем значение b 9/2.​ Таким образом٫ точка B будет иметь координаты (-5٫ 9/2).​Шаг 5⁚ Найдем середину отрезка.​Используя формулы для нахождения координат середины отрезка٫ получим⁚
x_c (-5 (-5)) / 2 -5
y_c (13 (9/2)) / 2 35/4

Таким образом, координаты точки C, которая является серединой отрезка AB, равны (-5, 35/4).​Шаг 6⁚ Найдем координаты точки, симметричной точке P относительно прямой.​Используя формулы для нахождения координат точки, симметричной точке P относительно прямой, получим⁚
x’ 2 * x_c ー x_a

y’ 2 * y_c ー y_a

Подставляя значения, получим⁚
x’ 2 * (-5) ー (-5) -5
y’ 2 * (35/4) ー 13 35/2 ⎻ 13 9/2

Таким образом, координаты точки, симметричной точке P(-5;13) относительно прямой 2x-3y-30٫ равны (-5٫ 9/2).​Произведение координат этой точки можно найти٫ умножив значения координат⁚
(-5) * (9/2) -45/2.​

AfinaAI