Привет! Я хотел бы поделиться своим опытом с рассуждением о отрицании высказываний. Давайте рассмотрим два примера и узнаем, какие из них являются истинными.а) «Любое натуральное число является простым или составным»
Чтобы проверить истинность данного высказывания, мы должны рассмотреть его отрицание. Отрицание этого высказывания будет звучать⁚ ″Существует натуральное число, которое не является ни простым, ни составным″.
Теперь посмотрим, является ли это отрицание истинным высказыванием. Вспомним, что простые числа ⎼ это числа, которые имеют ровно два делителя⁚ 1 и само число. Составные числа ⎼ это числа, имеющие больше двух делителей.Отрицание утверждает, что существует число, которое не является ни простым, ни составным. Это утверждение неверно, так как каждое натуральное число является либо простым, либо составным. Следовательно, отрицание исходного высказывания является ложным.б) «Любой треугольник является тупоугольным или остроугольным»
Теперь рассмотрим второй пример. Отрицание этого высказывания будет звучать⁚ ″Существует треугольник, который не является ни тупоугольным, ни остроугольным″. Для того чтобы опровергнуть данное отрицание, нам нужно найти такой треугольник. Мы знаем, что треугольник не может быть ни тупоугольным, ни остроугольным только в случае, если он является прямоугольным. Таким образом, чтобы подтвердить отрицание, мы должны найти треугольник, который является прямоугольным. Вспомним, что прямоугольный треугольник имеет один прямой угол. Это означает, что рассуждение, которое утверждает, что существует треугольник, который не является ни тупоугольным, ни остроугольным, является истинным. Таким образом, второе высказывание и его отрицание являются истинными. В итоге, мы видим, что только в первом случае отрицание исходного высказывания было ложным. Во-втором случае же, отрицание оказалось истинным. Это показывает, насколько важно разобраться в том, как сформулировано высказывание и как его отрицание может быть истинным или ложным.