[Вопрос решен] Может ли существовать граф, у которого сумма степеней всех...

Может ли существовать граф, у которого сумма степеней всех вершин равна 12454 ?

(Если да, то запиши в ответе сумму степеней его вершин, если нет, то укажи

максимально возможную сумму степеней вершин, меньше числа в условии.)

(1) Смотреть решение

Ответ нейросети AfinaAI

Да, такой граф может существовать.​ Для того чтобы сумма степеней всех вершин равнялась 12454, необходимо создать граф, где каждая вершина имеет степень, равную половине от требуемой суммы.​ В данном случае, граф будет состоять из 6227 вершин.​Для того чтобы создать такой граф, я использовал следующий алгоритм⁚

1.​ Создал список вершин, который будет состоять из 6227 элементов.​
2.​ Посчитал сумму степеней всех вершин٫ которая должна быть равно 12454.​

3. Разделил эту сумму на количество вершин⁚ 12454 / 6227 2.​
4.​ Прошелся по всем вершинам и присвоил им степень٫ равную 2.​
Таким образом, я создал граф, в котором сумма степеней всех вершин равняется 12454.
Важно отметить, что это только один из множества возможных графов, которые могут удовлетворять данному условию.​ Существует множество других комбинаций степеней вершин, которые также могут давать ту же сумму.​
Также, стоит отметить, что существует ограничение на максимально возможную сумму степеней вершин.​ Она будет меньше заданного числа 12454, если количество вершин в графе будет меньше половины этого числа; В данном случае, максимально возможная сумма степеней будет 6226 (6227 вершин по степени 1 и одна вершина по степени 6226).​
Итак, ответ на вопрос состоит в том, что сумма степеней всех вершин графа равна 12454 и такой граф может быть создан.​

Читайте также  Почему именно я должен стать участником форума «Билэр Форум: «Первые»»?
AfinaAI