[Вопрос решен] найдите наименьшее из корней уравнения 2x^2-3x 1=0

найдите наименьшее из корней уравнения 2x^2-3x 1=0

(1) Смотреть решение

Ответ нейросети AfinaAI

Я обнаружил, что уравнения часто встречаются в нашей повседневной жизни. Возможно, вам когда-нибудь приходилось сталкиваться с уравнениями при решении задач по математике или физике.​ Недавно у меня возникла необходимость найти наименьший корень уравнения.​
Уравнение, которое я решил, было следующим⁚ 2x^2-3x 10.​ Хотя можно было бы использовать различные методы решения, я решил воспользоваться методом квадратного корня.​

Сначала я записал коэффициенты уравнения⁚ a2٫ b-3٫ c1. Затем я применил формулу дискриминанта⁚ D b^2 ‒ 4ac.​ В моем случае это было D (-3)^2 ‒ 4*2*1 9 ー 8 1.Когда я узнал значение дискриминанта٫ я понял٫ что есть два случая; Если D > 0٫ то у уравнения есть два различных корня.​ Если D 0٫ то у уравнения есть только один корень.​Зная٫ что D 1٫ я пришел к выводу٫ что у уравнения есть два различных корня.​ С использованием формулы для нахождения корней у меня получилось следующее⁚

x1 (-b sqrt(D)) / (2a) (-(-3) sqrt(1)) / (2*2) (3 1) / 4 4 / 4 1

x2 (-b ー sqrt(D)) / (2a) (-(-3) ‒ sqrt(1)) / (2*2) (3 ‒ 1) / 4 2 / 4 1/2
Это значит, что корни уравнения 2x^2-3x 10 равны⁚ x11 и x21/2.​ Теперь я знаю, что наименьший корень равен 1/2.​

Читайте также  Какое минимальное время понадобится Богдану, чтобы доехать от одного светофора до другого? Расстояние между светофорами равно 576 м, а при торможении постоянное ускорение самоката в 2 раза больше, чем при разгоне. На каждом светофоре Богдану приходится останавливаться. Ответ выразите в секундах, округлите до целых.

постоянное ускорение 2 м/с в квадрате.

максимальная скорость электро самоката 8 м/с

AfinaAI