Всем привет! Сегодня я хочу рассказать о своем опыте использования рекурсивной функции sum(a‚ b)‚ которая возвращает сумму двух целых неотрицательных чисел‚ используя только операции 1 и -1‚ и не используя циклы.
Когда я столкнулся с этой задачей‚ мне пришло в голову использовать рекурсию ー процесс вызова функцией самой себя. Такой подход позволяет нам решить сложную задачу путем разбиения ее на более простые подзадачи.
Для начала‚ давайте рассмотрим базовый случай ⏤ когда одно из чисел равно нулю. Если одно из чисел равно нулю‚ то сумма этих чисел будет равна другому числу. Например‚ если a равно нулю‚ то сумма a и b будет равна b. Аналогично‚ если b равно нулю‚ то сумма a и b будет равна a.
Теперь рассмотрим рекурсивный случай ⏤ когда оба числа больше нуля. Для решения этой задачи‚ мы можем использовать следующий подход⁚
- Найдем сумму a и b-1 (это можно сделать‚ уменьшив b на 1).
- Вернем результат суммы из предыдущего шага‚ увеличенный на 1 (это будет наш результат).
Итак‚ если мы хотим найти сумму‚ например‚ 3 и 5‚ мы можем сделать следующее⁚
- Вызвать функцию sum(3‚ 4) ⏤ уменьшить b на 1.
- Вызвать функцию sum(3‚ 3) ー уменьшить b на 1.
- Вызвать функцию sum(3‚ 2) ー уменьшить b на 1.
- Вызвать функцию sum(3‚ 1) ー уменьшить b на 1.
- Вызвать функцию sum(3‚ 0) ー уменьшить b на 1.
- Вернуть результат суммы из предыдущего шага (3) 1 4.
Таким образом‚ результатом вызова функции sum(3‚ 5) будет 4.
Итак‚ вот как выглядит рекурсивная функция sum(a‚ b) на языке Python⁚
def sum(a‚ b)⁚
if b 0⁚
return a
else⁚
return sum(a 1‚ b ⏤ 1)
Использование данной функции дает возможность найти сумму двух целых неотрицательных чисел‚ используя только операции 1 и -1‚ и не используя циклы.