[Вопрос решен] Самостоятельная работа по теме: «Формулы корней квадратного...

Самостоятельная работа по теме: «Формулы корней квадратного уравнения.»

Вариант 1

Решите уравнения:

1. 2x ^ 2 – 3x – 5 = 0

2. x ^ 2 x – 2 = 0

3. – x ^ 2 x 9 = 0

4. 4x ^ 2 6x = 10

5. 3x ^ 2 – 2x 9 = 0

6. x ^ 2 8x 16 = 0

Вариант 2

Решите уравнения:

1. 2x ^ 2 3x – 5 = 0

2. x ^ 2 – x – 2 = 0

3. – x ^ 2 – 8x 9 = 0

4. 6x ^ 2 – 9x = 15

5. x ^ 2 – x 5 = 0

6. x ^ 2 10x 25 = 0

(1) Смотреть решение

Ответ нейросети AfinaAI

Привет!​ В данной статье я хотел бы поделиться с вами своим опытом самостоятельной работы по теме ″Формулы корней квадратного уравнения″.​ Я решал задачи по двум вариантам, чтобы показать вам, как разобраться с разными типами уравнений.​Начнем с варианта 1.​1.​ 2x^2 – 3x – 5 0⁚ Для начала, я рассмотрел дискриминант данного уравнения, который равен D b^2 ‒ 4ac (-3)^2 ౼ 4*2*(-5) 9 40 49.​ Так как D > 0, то у уравнения есть два корня. Формула для нахождения корней квадратного уравнения имеет вид x (-b ± √D) / (2a). Подставив значения коэффициентов, я получил x1 (3 7) / 4 10 / 4 2.​5 и x2 (3 ‒ 7) / 4 -4 / 4 -1.​

2.​ x^2 x – 2 0⁚ Снова рассчитал дискриминант D 1 8 9.​ D > 0, поэтому уравнение имеет два корня.​ Подставив значения, получил x1 (-1 3) / 2 2 / 2 1 и x2 (-1 ౼ 3) / 2 -4 / 2 -2.

3. – x^2 x 9 0⁚ Рассчитал дискриминант D 1 ‒ 36 -35. D < 0, поэтому уравнение не имеет вещественных корней. 4.​ 4x^2 6x 10⁚ Поставил уравнение в виде 4x^2 6x ౼ 10 0 и рассчитал дискриминант D 6^2 ‒ 4*4*(-10) 36 160 196.​ D > 0, следовательно, уравнение имеет два корня.​ Расчеты позволили получить x1 (-6 √196) / (8) -6 14 / 8 8 / 8 1 и x2 (-6 ‒ √196) / (8) -6 ౼ 14 / 8 -20 / 8 -2.​5.​

5.​ 3x^2 – 2x 9 0⁚ Расчитал дискриминант D (-2)^2 ‒ 4*3*9 4 ౼ 108 -104. D < 0, поэтому уравнение не имеет вещественных корней.​ 6. x^2 8x 16 0⁚ Рассчитал дискриминант D 8^2 ౼ 4*1*16 64 ‒ 64 0. D 0, следовательно, уравнение имеет один корень.​ Подставив значения, получил x -8 / 2 -4. Теперь перейдем к варианту 2.​1.​ 2x^2 3x – 5 0⁚ Рассчитал дискриминант D 3^2 ౼ 4*2*(-5) 9 40 49. D > 0, следовательно, уравнение имеет два корня.​ Подставил значения и получил x1 (-3 7) / 4 4 / 4 1 и x2 (-3 ౼ 7) / 4 -10 / 4 -2.​5.​
2. x^2 – x – 2 0⁚ Рассчитал дискриминант D (-1)^2 ౼ 4*1*(-2) 1 8 9.​ D > 0, поэтому уравнение имеет два корня. Получил x1 (1 3) / 2 4 / 2 2 и x2 (1 ‒ 3) / 2 -2 / 2 -1.​

Читайте также  Груз массой 25 кг находится на наклонной плоскости с углом наклона 30 градусов. Коэффицент трения между бруском и плоскостью 0,41. К грузу приложена сила направленная горизонтально и паралелльно плоскости равная 100 Н. Какого установившее ускорение груза.

3.​ – x^2 – 8x 9 0⁚ Рассчитал дискриминант D (-8)^2 ౼ 4*(-1)*9 64 36 100. D > 0, поэтому уравнение имеет два корня.​ Подставил значения и получил x1 (-(-8) 10) / (-2) 16 / -2 -8 и x2 (-(-8) ౼ 10) / (-2) 18 / -2 -9.​

4.​ 6x^2 – 9x 15⁚ Поставил уравнение в виде 6x^2 – 9x ౼ 15 0 и рассчитал дискриминант D (-9)^2 ‒ 4*6*(-15) 81 360 441.​ D > 0, следовательно, уравнение имеет два корня.​ Подставил значения и получил x1 (9 √441) / (12) 9 21 / 12 30 / 12 2.​5 и x2 (9 ‒ √441) / (12) 9 ౼ 21 / 12 -12 / 12 -1.​

5.​ x^2 – x 5 0⁚ Рассчитал дискриминант D (-1)^2 ౼ 4*1*5 1 ‒ 20 -19. D < 0, поэтому уравнение не имеет вещественных корней.​ 6.​ x^2 10x 25 0⁚ Расчитал дискриминант D 10^2 ‒ 4*1*25 100 ౼ 100 0.​ D 0, следовательно, уравнение имеет один корень. Подставил значения и получил x -10 / 2 -5.​ Надеюсь, мой опыт самостоятельной работы по решению уравнений с помощью формулы корней квадратного уравнения был полезным для вас. Помните, что практика ౼ ключ к успеху, поэтому не переставайте упражняться и развиваться в этой области!​

AfinaAI