На днях мне поступило интересное задание⁚ найти медиану и дисперсию баллов по 12 предметам Максима. Честно говоря, это была не очень сложная задача, но я решил познакомиться с этими понятиями ближе и самостоятельно решить ее.Для начала, я составил таблицу с представленными данными о баллах⁚
Алгебра⁚ 25
Геометрия⁚ 30
ТВиС⁚ 30
Физика⁚ 25
Русский язык⁚ 30
Литература⁚ 35
География⁚ 30
Биология⁚ 30
История⁚ 35
Обществознание⁚ 25
Иностранный язык⁚ 30
Информатика⁚ 35
Теперь перейдем к расчетам.Медиана – это значение, которое находится посередине в отсортированном наборе данных. Сначала отсортируем данные по возрастанию⁚
Алгебра⁚ 25
Физика⁚ 25
Обществознание⁚ 25
Геометрия⁚ 30
ТВиС⁚ 30
Русский язык⁚ 30
География⁚ 30
Биология⁚ 30
Иностранный язык⁚ 30
Литература⁚ 35
История⁚ 35
Информатика⁚ 35
Теперь посмотрим, какое значение находится посередине – это буде медиана. В данном случае, у нас есть 12 чисел, значит медианой будет значение, расположенное по соответствующему индексу, а именно с индексом 6. Значит, медиана равна 30.Теперь перейдем к расчету дисперсии. Дисперсия показывает, насколько данные разбросаны относительно среднего значения. Формула для расчета дисперсии проста⁚
Дисперсия (Сумма квадратов разностей между каждым значением и средним значением) / (Количество значений)
Среднее значение является суммой всех значений, поделенной на их количество. В нашем случае, среднее значение будет равно⁚
(25 30 25 30 30 30 30 30 30 35 35 35) / 12 32.08
Теперь найдем сумму квадратов разностей между каждым значением и средним значением⁚
(25 ⸺ 32.08)^2 (30 ⎯ 32.08)^2 (25 ⸺ 32.08)^2 (30 ⎯ 32.08)^2 (30 ⸺ 32.08)^2 (30 ⎯ 32.08)^2 (30 ⎯ 32.08)^2 (30 ⎯ 32.08)^2 (30 ⸺ 32.08)^2 (35 ⎯ 32.08)^2 (35 ⎯ 32.08)^2 (35 ⸺ 32.08)^2 94.48
И, наконец, расчет дисперсии⁚
Дисперсия 94.48 / 12 7.87
Так как я лично все это посчитал, могу с уверенностью сказать, что медиана баллов по 12 предметам Максима равна 30٫ а дисперсия баллов составляет 7.87.