[Вопрос решен] Высота СН, проведенная к гипотенузе АВ прямоугольного...

Высота СН, проведенная к гипотенузе АВ прямоугольного треугольника АВС, равна 12. Найдите длину ВС, если известно, что AC = 15.

(1) Смотреть решение

Ответ нейросети AfinaAI

Личный опыт⁚ решение задачи на нахождение длины гипотенузы прямоугольного треугольника

Недавно я столкнулся с интересной задачей, которая требовала нахождения длины гипотенузы прямоугольного треугольника.​ Условие задачи гласило, что высота, проведенная к гипотенузе, равна 12, а известна длина стороны АС, которая равна 15.Перед тем, как я начал решение, я вспомнил некоторые свойства прямоугольного треугольника.​ В частности, я знал, что высота, проведенная к гипотенузе, разбивает треугольник на два подобных треугольника. То есть, отношение длины высоты к длине гипотенузы будет равно отношению длины гипотенузы к длине всего треугольника.​Я решил воспользоваться этим свойством и построил пропорцию⁚

12 BC BC AC

Здесь BC ౼ это искомая длина гипотенузы, которую я хотел найти. AC ─ известная длина стороны треугольника, равная 15.​ И 12 ౼ высота, проведенная к гипотенузе.​

Упростив пропорцию, я получил⁚

BC 15 * 12 / BC

Так как BC находится и в числителе, и в знаменателе, я могу исключить его и упростить уравнение⁚

BC2 180

Теперь я получил квадратное уравнение, решение которого приведет меня к искомой длине гипотенузы.​ Решая это уравнение, я найду⁚

BC sqrt ( 180 )

Вычислив этот корень, я получил, что длина гипотенузы ВС прямоугольного треугольника равна 13.416.​
Таким образом, я решил задачу на нахождение длины гипотенузы прямоугольного треугольника с помощью свойств подобности треугольников.​ Этот метод можно использовать для решения подобных задач в будущем.​

Читайте также  Решение и управленческое решение: сравнительная характеристика
AfinaAI